
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Weighted Graph-Based Modelling of Relationship

Dynamics to Determine Optimal Strategies for Long-

Term Payoffs in the Iterated Prisoner’s Dilemma

Daniel Pedrosa Wu - 135230991

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1danielpedrosawu5705@gmail.com, 13523099@std.stei.itb.ac.id

Abstract—This paper explores the implementation of weighted

graph in modelling relationship dynamics in the context of Iterated

Prisoner’s Dilemma and its impact in long-term success. By

integrating relationship dynamics with graph theory, this study

shows how the ability to build and sever relationship can majorly

influence the evolution of strategies over time. The research

investigates the dynamics between cooperative and defective

strategy. Result shows that defective strategy offers greater

immediate result but falls off quickly while cooperative strategy

takes time to build up but offers a more sustainable outcome. It

suggests that successful strategies in IPD requires a balance

between the two concepts.

Keywords—Cooperation, Defection, Moran Process, Prisoner’s

Dilemma,

I. INTRODUCTION

In this interconnected world, interactions are rarely isolated

events. They hinge on trust, reciprocity, potential for mutual

benefits and anticipation of future encounters. Although both

parties stand to gain from mutual cooperation, the temptation to

further one’s own self interest and fear of exploitation are ever-

present. Consequently, decision-making are rarely

straightforward. Individiuals, organization and even nations are

constantly faced with decisions that have to balance short-term

gains with long-term consequences. These dynamics lie at the

heart of many real-world decision-making processes.

At their core, these decisions revolve around the choice

between cooperation and defection. Cooperation offers mutual

benefits, while defection can yield greater immediate rewards.

The field of game theory provides a mathematical framework

for analyzing interdependent decisions and strategic decision-

making. Among its many models, the Prisoner’s Dilemma (PD)

stands as a fundamental paradigm in understanding the tension

between self interest and collective welfare.

In the PD, two players—a term used in game theory to refer

to the parties involved—must decide between cooperating with

one another for mutual benefit or defecting for personal gain,

with the outcome depending on their combined choices. Despite

its simplicity, the PD stands out for its relevance in several

fields. Even nowadays, it is still used to model real-world

scenarios, ranging from economics to international relations and

scientific fields. While the classic version of PD offers valuable

insights into one-time interactions, very few real-world

interactions are one-off occurences. Most decisions are

influenced by past actions and ongoing relationships.

To better reflect these real scenarios, the PD is often extended

into the Iterated Prisoner’s Dilemma (IPD). The IPD extends the

PD into repeated interactions, allowing players to adapt their

strategies and allowing past outcomes to influence future

choices. However, traditional IPD models often neglect to

account for the possibility of severing and rebuilding

relationships. These models assume that players will continue to

interact with each other despite a history of negative

interactions, without considering that relationship may be

severed or rebuilt over time.

In many real-world context, severing ties can be a valid

strategy to help mitigate risk and protect personal interest. These

scenarios can be modelled using weighted graphs by

representing the players as nodes and the strength of the

relationship as edges, updating based on cooperative or

defective actions. The weights on the edge can reflect the level

of trust, cooperation and history between the players. This

approach provides a more dynamic system, reflecting the

nuances of real-world decision-making processes.

This study explores the application of weighted graphs to

enhance the modelling of the Iterated Prisoner’s Dilemma. By

incorporating the evolving relationships between players into a

graph structure, this study seeks to identify strategies that

maximizes long-term payoff by balancing short-term decisions

with long-term relationship outcomes. Through Python-based

simulations, this study aims to simulate the intricate and

nuanced dynamics of real-world decision-making.

II. THEORETICAL FOUNDATION

A. Graph

A graph is a discrete mathematical structure, consisting of

vertices (nodes) and edges that connect these vertices and is used

to model relationship between objects [4]. Formally, a graph 𝐺

is defined as 𝐺 = (𝑉, 𝐸), where:

1. 𝑉 is a nonempty set of vertices, which represents the

objects in the system [1].

𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}

mailto:1danielpedrosawu5705@gmail.com
mailto:13523099@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

2. 𝐸 is a set of edges, which represents the relationship

between vertices [1].

𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}

Fig. 2.1. Example of a Graph

Source: Generated using

https://csacademy.com/app/graph_editor/

Graphs can be grouped based on different properties. These

properties include:

1. Complexity

A graph in which each pair of vertices are connected by

at most one edge is called a simple graph [1]. More

complex graphs may include loops, where edges connect

a vertex to itself or multiple edges, where the same pair

of vertices are connected by two or more edges. These

graphs are called unsimple graph [1], which can further

be classified into multi-graph that contains multiple

edges and pseudo-graph which contains loops [1].

Fig. 2.2. Simple and Unsimple Graphs

Source: https://mathworld.wolfram.com/SimpleGraph.html

2. Directional Orientation

A graph in which each edge has a specified direction is

called a directed graph [1]. This indicates a one-way

relation between two vertices. When the edges of a graph

do not have a specified direction, the graph is called an

undirected graph [1]. While they are most commonly

used to represent a bidirectional relationship, this is not

always the case.

Fig. 2.3. Directed and Undirected Graph

Source: Generated using

https://csacademy.com/app/graph_editor/

3. Edge Weights

A graph in which each edge is assigned a numerical value

(weight) is called a weighted graph [1]. These values can

represent various attributes, depending on context. In

contrast, a graph in which edges are not assigned

numerical value is called an unweighted graph. This

graph treat all edges as equal.

Fig. 2.4. Unweighted and Weighted Graph

Source: Generated using

https://csacademy.com/app/graph_editor/

4. Connectivity

A graph where there exist a path from every vertices to

every other vertices is called a connected graph [1]. This

means that it is possible to reach any vertex to any other

vertex by traversing the graph. If there is atleast one pair

of vertices that does not satisfy this condition, then the

graph is called a disconnected graph [1].

Fig. 2.5. Connected and Disconnected Graph

Source: https://rajshah001.medium.com/graphs-and-real-life-

application-28759b77b833

Some terminology used in graph theory includes:

1. Adjacency

Two vertices 𝑢 and 𝑣 in graph 𝐺 are called adjacent if

there exist an edge 𝑒 of 𝐺 in which 𝑢 and 𝑣 are the

endpoints of 𝑒 [4].

2. Incidency

An edge 𝑒 is called incident with vertices 𝑢 and 𝑣 if 𝑒

connects 𝑢 and 𝑣 [4].

3. Degree

The degree of a vertex 𝑣 is the number of edges incident

to it, except that a loop at the vertex contributes twice to

the degree of the vertex [4].

https://csacademy.com/app/graph_editor/
https://mathworld.wolfram.com/SimpleGraph.html
https://csacademy.com/app/graph_editor/
https://csacademy.com/app/graph_editor/
https://rajshah001.medium.com/graphs-and-real-life-application-28759b77b833
https://rajshah001.medium.com/graphs-and-real-life-application-28759b77b833

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

4. Isolated Vertex

A vertex 𝑣 is called an isolated vertex if there exist no

edges 𝑒 that are incident to it [1].

5. Null Graph

A graph 𝑔 is called a null graph if the set of edges 𝐸 are

empty. In other words, there are no edges 𝑒 connecting

any pair of vertices 𝑣 in 𝑔 [1].

6. Path

A path in graph 𝐺 is a sequence of vertices 𝑉 and edges

𝐸 such that each pair of vertices are connected by an

edge. The path starts at vertex 𝑣0 and ends at vertex 𝑣𝑛

[1].

7. Cycle

A cycle in graph 𝐺 is a path that start and end on the same

vertex [1].

B. The Prisoner’s Dilemma

Fig. 2.6. Prisoner’s Dilemma Illustrated

Source: https://www.britannica.com/science/game-theory/The-

prisoners-dilemma

Imagine two individuals, John and Jane who have been

arrested for a crime that they committed together. Both of them

are placed in separate cells. The police do not have sufficient

evidence to convict them of a major crime but they do have

sufficient evidence to convict them of a lesser crime. They offer

the duo the same deal:

1. If one of them remains silent while the other is silent,

then the one who confessed will remain free while the

other will receive a long sentence.

2. If both of them confess, then both will receive moderate

sentences.

3. If both of them remain silent, then both will receive short

sentences.

Both prisoner must decide to cooperate with each other and

remain silent or betray the other by confessing. The dilemma

that they are faced with is that regardless of what the other

chooses, it is within their best interest to betray the other and

confess, since the potential reward for confessing is much higher

than remaining silent. The rationale is that if Jane cooperates,

then John should defect since going free is better than receiving

short sentence. If John defects, then Jane should also defect

since receiving a short sentence is better than receiving a long

sentence. However, notice that if both chooses to betray each

other, they end up with a worse outcome than if both chooses to

remain silent.

This puzzle illustrates a conflict between individual

rationality and collective well-being. From a self-interested

rational perspective, mutual cooperation is irrational. However,

if both parties acted on their self-interested rationale, they end

up with a worse outcome than if they had both chosen the

“irrational” choice of cooperation.

This paradox is also known as the Prisoner’s Dilemma (PD),

one of the most well-known problem in the field of game theory.

In game theory, rationality is defined as the ability to make

decisions that maximizes one’s own personal payoff, based on

the given premises and information. In the context of the

Prisoner’s Dilemma, both players are assumed to be rational

agent and are aware that the other is also a rational agent. Given

this information, both players are likely choosing to defect since

it provides a better payoff regardless of the other player’s choice.

In its simplest form, the Prisoner’s Dilemma can be expressed

using a payoff matrix [5]:

 C D

C (𝑅, 𝑅) (𝑆, 𝑇)

D (𝑇, 𝑆) (𝑃, 𝑃)

Where:

1. 𝑅 is the reward for mutual cooperation.

2. 𝑃 is the punishment for mutual defection.

3. 𝑆 is the sucker payoff when one player cooperate while

the other defect.

4. 𝑇 is the temptation payoff when one player defect whle

the other cooperate.

This dilemma only works if the payoff follows the inequality

𝑇 > 𝑅 > 𝑆 > 𝑃. This inequality means that the temptation

payoff yields greater reward than the reward for mutual

cooperation, while on the other hand the punishment for mutual

defection is worse than the sucker payoff. Consequently, the

dominant strategy for both player is to defect (D) as it provides

the best payoff regardless of the other player’s choice. However,

in this scenario, both players playing rationally leads to

suboptimal outcome for both players, which illustrate the

paradoxical nature of this dilemma.

C. The Iterated Prisoner’s Dilemma

While the Prisoner’s Dilemma involves a one-time

interaction, real-world scenarios often involve repeated

interactions between individuals. To more accurately model

these situations, the Iterated Prisoner’s Dilemma (IPD) builds

on the classic Prisoner’s Dilemma by allowing players to engage

in multiple rounds of interactions. This introduces a whole new

dimension to the game by allowing players to learn from

previous interactions and adapt their strategy accordingly. This

version of the Prisoner’s Dilemma captures the dynamics of

https://www.britannica.com/science/game-theory/The-prisoners-dilemma
https://www.britannica.com/science/game-theory/The-prisoners-dilemma

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

real-world relationships more accurately.

In contrast to the Prisoner’s Dilemma where defecting is the

dominant strategy, the IPD allows for more cooperative tactics

to emerge as viable and advantageous strategies. The repeated

nature of the interactions allow players to influence other’s

behavior, develop trust and build relationships. In the IPD,

players must not only make decisions for immediate payoffs, but

also consider the ramifications in future rounds. This creates an

environment where past cooperations are rewarded and

continuous defections are punished.

It is important to note that this does not mean that defection

is an inherently bad strategy. Defection can still be effective in

specific context, whether as a means of retaliation or exploit

overly trusting players. The iterative nature of the IPD

incentivizes player to take a more conservative approach, by

weighing the potential risk and reward for each decision. Being

overly cooperative can lead to exploitation, while continuous

defection leads diminishing trust. Successful players maintain a

balance between cooperation and defection, adjusting their

strategy based on past actions. In an infinite game, the ability to

build and maintain relationship becomes even more important,

as opposed to a finite game where player might defect earlier to

maximize payoffs. This balancing act emphasizes the

complexity of real-world decision-making, where strategies

must adapt to evolving circumstances.

In his 1984 book titled The Evolution of Cooperation, Robert

Axelrod delved into how cooperation can be fostered by self-

interested rational individuals. Axelrod detailed how he ran a

series of tournaments where individuals submit their strategies

for the IPD and pitted against one another in a round robin

tournament. Axelrod found that greedy strategies tend to do very

poorly in the long run, while more altruistic strategies thrive. To

his surprise, the winner was the simplest program, utilizing the

tit for tat strategy [6]. The strategy starts by cooperating and

proceeds to copy the opponent’s previous move till the end of

the match.

This success can be attributed to the principle of reciprocity.

Reciprocity refers to responding to another’s action with a

similar action. By meeting cooperation with cooperation and

defection with defection, the strategy fosters trust with other

cooperators and deters exploitation by defectors. Based on the

tournament results, Axelrod outlined four key elements of a

successful strategy [6] which includes:

1. Nice

A successful strategy should always start by cooperating

and avoid being the first to defect. This builds trust and

encourages mutual cooperation from the start. A

successful strategy should also be forgiving, allowing

reconciliationbut firm enough to avoid being exploited.

2. Non-envious

A successful strategy does not aim to outperform others.

Instead, it prioritizes mutually beneficial outcomes,

realizing that those benefits accumulate over time.

3. Reciprocating

A successful strategy should reciprocate the opponent’s

action in kind. It rewards cooperation with cooperation

and retaliates against defection to discourage further

exploitation.

4. Simple

A successful strategy should be simple and easy to

understand. Clearer intentions make it easy for others to

cooperate and achieve mutually beneficial outcomes.

D. The Moran Process

The Moran Process, named after British mathematician is a

stochastic (random) model used to study evolution within a

finite population. Due to being a stochastic model, the outcome

of the Moran Process is not deterministic and the system evolves

over time in unpredictable ways. The Iterated Prisoner’s

Dilemma, which focuses on strategy evolution over a series of

repeated interactions between two individuals can be further

extended to include the Moran Process. By including the

stochastic element of the Moran Process, the IPD can be used to

not only explore how strategies evolve through repeated

interactions, but also how it spreads across a population.

In the context of IPDs, a fixed population of individuals

individually adopt their own strategies and interact with one

another. Individuals considered fit for reproduction are chosen

at random based on their payoff from their interactions with

other individuals. This individual then reproduces, passing

down their strategy to another individual chosen at random.

Over time, this ensures successful strategies are more likely to

spread, while strategies that perform poorly will fade away. In a

way, this process reflects real-world scenarios where successful

traits, strategies and trends tend to dominate and persist within a

population.

III. IMPLEMENTATION

A. Research Limitation

For the purpose of this research, some limitations are set to

maintain focus and clarity. The limitations are as follows:

1. Fixed Population Size: This research assumes a fixed

population size. The size of the population will not grow

or shrink, but the strategies adopted by individuals may

change.

2. Finite Iterations: The model is limited to a finite number

of iterations due to practical limitiations.

3. Simplified Payoff Matrix: A standard payoff matrix

following the 𝑇 > 𝑅 > 𝑆 > 𝑃 inequality is used to

simplify interaction dynamics.

4. Limited Strategies: The set of strategies used will be

limited to a predefined set, which incorporate

cooperative, defective and adaptive strategies to maintain

a manageable level of complexity.

5. Limited Interaction Scope: Interactions are restricted to a

pair of players at a time, without considering the

influence of neighboring individuals. The population

only affects the model during reproduction.

B. Programming Language

The implementation of this program will be done using

Python. Python is chosen for its versatility, ease of use and

extensive library support. A key library used for this

implementation is Axelrod. Axelrod is powerful library which

provides various tools for Iterated Prisoner’s Dilemma research.

Axelrod offers over 200 strategies, facilitates the creation of

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

matches and tournaments, and provides an easy way to analyze

the result in detail. Additionally, libraries such as random for its

stochastic elements, NetworkX for its graph-based computation

and Matplotlib for its visualization will be used to complement

Axelrod already robust simulation of the Iterated Prisoner’s

Dilemma.

import axelrod as axl
import random
import networkx as nx
import matplotlib.pyplot as plt

C. Simulation Parameters

To effectively model this simulation, a set of parameters is

defined. The following parameters control the behavior of the

simulation and allows for a more-controlled exploration of

relationship dynamics within the scope of the Iterated Prisoner’s

Dilemma:

1. THRESHOLD: A threshold value that determine

whether an interaction between two players should occur.

If the relationship (edge weights) between two players is

below the threshold, relationship will be severed and both

will cease to interact. The corresponding edge on the

relationship graph will also be removed. This value is

used to model a deteriorating relationship.

2. REBUILD_CHANCE: This parameter defines the

chance of rebuilding a relationship. If a relationship

between two players was severed, there is a chance that

the relationship might be rebuilt based on this value. This

offers a possibility of reconciliation between players.

3. NUM_ROUNDS: This parameter dictates the total

number of rounds that will take place between the

players.

4. NUM_TURNS: This parameter specifies the amount of

turns in a single round of interaction between each pair

of players. In other words, this parameter defines how

many moves each player will make in a single round.

5. USE_MORAN_PROCESS: This parameter determines

if the Moran Process will be used in the simulation. If

enabled, players with higher payoffs have a higher

chance of reproducing and replacing less fortunate

players. This is applied after each rounds.

6. RANDOM_PLAYERS: This parameter determines if

players are assigned strategies randomly or initialized

with a fixed set of strategies.

7. PLAYER_COUNTS: This parameter determines the

amount of players generated when

RANDOM_PLAYERS is enabled.

8. INIT_WEIGHT: This parameter sets the initial weights

of relationship to determine the strength of the

relationship. These weights will evolve as the simulation

progress.

Simulation parameters
THRESHOLD = 0 # Only allow matches if the weight is above this
threshold
REBUILD_CHANCE = 0.1 # Chance to rebuild severed relationships
NUM_ROUNDS = 5 # Number of rounds in the simulation
NUM_TURNS = 20 # Number of turns each round between each player
USE_MORAN_PROCESS = False # Toggle for Moran process
RANDOM_PLAYERS = False # Toggle for randomized player
PLAYER_COUNT = 10 # Player count for randomize player

INIT_WEIGHT = 100 # Initial weights of the edges

D. Initialization

The next step is initializing the key components of the

simulation, which are the players and the relationship graph.

Players are initialized by selecting from a predefined set of

strategies, either randomized or fixed depending on the

configured parameters. Each player is an instance of the chosen

strategy, which are responsible for dictating how the player

interacts with other player during the simulation.

Define the players
if RANDOM_PLAYERS:

players = [random.choice(strategies) for i in
range(PLAYER_COUNT)] # Randomize players
else:

players = [
 axl.Cooperator(),
 axl.Defector(),
 axl.Defector(),
 axl.Cooperator(),
 axl.Cooperator(),
 axl.Defector(),
 axl.Cooperator(),
 axl.Cooperator(),
 axl.Defector(),
 axl.Defector()
]

Below is a list of the predefined strategies:
List of strategies
strategies = [

axl.Cooperator(),
axl.Defector(),
axl.TitForTat(),
axl.Grudger(),
axl.Random(),
axl.Adaptive(),
axl.AdaptiveTitForTat(),
axl.Forgiver(),
axl.ForgivingTitForTat(),
axl.Bully(),
axl.Grumpy(),
axl.Punisher(),
axl.Resurrection(),
axl.Gradual(),
axl.GradualKiller(),
axl.CycleHunter(),
axl.AntiTitForTat(),
axl.Aggravater(),
axl.HardTitForTat(),
axl.HardGoByMajority(),
axl.UsuallyCooperates(),
axl.UsuallyDefects(),
axl.SuspiciousTitForTat(),
axl.WorseAndWorse(),
axl.DoubleCrosser(),
axl.Predator(),
axl.Prober(),
axl.NiceAverageCopier(),
axl.CycleHunter(),
axl.AntiCycler(),
axl.EasyGo(),
axl.OriginalGradual(),
axl.Detective(),
axl.NTitsForMTats(),
axl.SneakyTitForTat(),
axl.AverageCopier(),
axl.WinStayLoseShift(),
axl.WinShiftLoseStay()

]

The relationship player is modelled using an unweighted

graph, which represents the players as nodes and relationship as

weighted edges. The initial weight of each edge is set to a

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

predefined value, defined in the parameters as INIT_WEIGHT.

The weight symbolizes the strength of the relationship between

the two nodes it connects. This weight is not static and can be

changed over time, depending on the interaction between the

two adjacent players. The graph serves two purposes, for one it

helps in tracking the dynamic and ever-evolving relationship

between every pair of players, and it also provides a clear

visualization of these relationships.

Initialize the relationship graph
relationship_graph = nx.Graph()
for i, player in enumerate(players, start=1):

relationship_graph.add_node(f"Player_{i}")

Initialize graph edges
for i in range(len(players)):

for j in range(i + 1, len(players)):
 relationship_graph.add_edge(f"Player_{i+1}",

f"Player_{j+1}", weight=INIT_WEIGHT)

Finally, a payoff accumulator is initialized to track the

cumulative payoff for each player throughout simulation. It is

implemented as a Python dictionary where the player acts as the

key while their corresponding payoff acts as the value. The

payoffs are updated after every round and subsequently

displayed to allow for further analysis.

Payoff accumulator for each player
payoff_accumulator = {f"Player_{i+1}": 0 for i in
range(len(players))}

E. Playing The Matches

The Axelrod library provides a built-in tournament system

that facilitates large scale IPD simulations. Unfortunately, this

built-in system does not fully meet the specific needs of this

research. Specific components of this research such as the

relationship dynamics through graph or the severance and

rebuilding of relationship are not supported by Axelrod’s

tournament system. To overcome this limitation, a custom

implementation of the tournament system was made. This

allows greater control on how the tournament is played out and

integration with the relationship graph.

 After each match, the graph is dynamically updated to reflect

the outcome of the interactions. This process is executed by the

update_relationships function. If a relationship falls

below the specified thresholds, then that relationship will be

severed. This is handled by the apply_thresholds function.

Once the thresholds are applied, the program identifies a severed

relationship and evaluate the possibility of rebuilding it through

the rebuild_relationships function.

def apply_thresholds(graph):

Sever relationship below the threshold

edges_to_remove = [(u, v) for u, v, data in

graph.edges(data=True) if data['weight'] <= THRESHOLD]
graph.remove_edges_from(edges_to_remove)

def rebuild_relationships(graph, players,
rebuild_chance=REBUILD_CHANCE):

Rebuild relationship based on random chances

for i in range(len(players)):
 for j in range(i + 1, len(players)):
 if not graph.has_edge(f"Player_{i+1}",

f"Player_{j+1}"):

 if random.random() < rebuild_chance:
 graph.add_edge(f"Player_{i+1}",

f"Player_{j+1}", weight=INIT_WEIGHT // 2)

def update_relationships(graph, i, j, relationship_change):
Update the relationship after each round

current_weight = graph.get_edge_data(f"Player_{i+1}",

f"Player_{j+1}", default={'weight': 0})['weight']
graph.add_edge(f"Player_{i+1}", f"Player_{j+1}",

weight=current_weight + relationship_change)

The next step is to play out the matches. As mentioned before,

the tournament uses a custom implementation to pit every player

against every other players. This is done by using a nested loop

to iterate through each pair of players. During the iteration, the

program checks if there is an edge (relationship) between the

players’ nodes in the graph. If there is, the program proceeds to

play a match with the number of turn specified in the simulation

parameters. The payoffs are then counted for every interactions

and the relationship is updated depending on both players’

moves during the match.

def play_matches(players, graph):

Play matches based on the relationship graph

results = {}
for i, player_a in enumerate(players):
 for j in range(i + 1, len(players)):
 if graph.has_edge(f"Player_{i+1}", f"Player_{j+1}"):
 match = axl.Match((player_a, players[j]),

turns=NUM_TURNS)
 interactions = match.play()
 payoffs =

axl.interaction_utils.compute_final_score(interactions)
 a_payoff, b_payoff = int(payoffs[0]),

int(payoffs[1])
 results[(f"Player_{i+1}", f"Player_{j+1}")] =

(interactions, (a_payoff, b_payoff))

 payoff_accumulator[f"Player_{i+1}"] += a_payoff
 payoff_accumulator[f"Player_{j+1}"] += b_payoff

 relationship_change = 0
 for action_a, action_b in interactions:
 if action_a == axl.Action.C and action_b ==

axl.Action.C:
 relationship_change += 1
 elif (action_a == axl.Action.C and action_b

== axl.Action.D) or (action_a == axl.Action.D and action_b ==
axl.Action.C):

 relationship_change -= 1
 elif action_a == axl.Action.D and action_b

== axl.Action.D:
 relationship_change -= 2

 update_relationships(graph, i, j,

relationship_change)

return results

Matches are then played out repeatedly in accordance to the

number of rounds specified in the parameters. This is referred to

as a tournament. The cumulative results from every matches

decide the overall performance of the player. After a round has

been played out, the program assesses the relationship between

the players. If there are any relationships below the thresholds,

then that relationships will be severed. Additionally, previously

severed relationships may be rebuild, depending on the rebuild

chance. If the Moran Process is toggled on, players with higher

payoffs has a chance to reproduce and replace the strategy of

another existing player.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

for round_number in range(NUM_ROUNDS):

print(f"Round {round_number + 1}")

Play matches
match_results = play_matches(players, relationship_graph)

Apply thresholds
apply_thresholds(relationship_graph)

Rebuild relationships
rebuild_relationships(relationship_graph, players,

rebuild_chance=REBUILD_CHANCE)

Apply Moran process
if USE_MORAN_PROCESS:
 moran_process(players, payoff_accumulator)

Print results after each round
print(f"Total Payoffs and Strategies after Round

{round_number + 1}:")
for i, player in enumerate(players):
 strategy_name = type(player).__name__
 total_payoff = payoff_accumulator[f"Player_{i+1}"]
 print(f"Player_{i+1}: {total_payoff} (Strategy:

{strategy_name})")

F. The Moran Process

The Axelrod library also provides a built-in mechanism to

implement the Moran Process, but similar to tournament system,

it does not account for the dynamic graph-based system

implemented in this research. The Moran Process works by

calculating the total accumulated payoffs of every players.

Every players are then assigned weights based on their own

accumulated payoffs in comparison to the total accumulated

payoffs. Based on this weight, a random player will be selected

to reproduce and replace the strategy of another player.

def moran_process(players, payoffs):

Evolve strategies using the Moran process

total_payoff = sum(payoffs.values())
if total_payoff == 0:
 return # Avoid division by zero

Calculate selection probabilities based on payoffs
selection_probs = [payoffs[f"Player_{i+1}"] / total_payoff

for i in range(len(players))]

Select a player to reproduce based on probabilities
reproducing_index = random.choices(range(len(players)),

weights=selection_probs, k=1)[0]

Select a player to be replaced
replaced_index = random.choice([i for i in

range(len(players)) if i != reproducing_index])

Replace the strategy of the selected player
players[replaced_index] = type(players[reproducing_index])()

G. Visualization

Once the tournament is complete, the program will display

the final payoff accumulated by each player. This provides

insight into the overall performance of the player against every

opponent. In addition to that, the program will visualize the state

of the relationship graph after the final round, showcasing the

end result of the evolving interactions between players.

def visualize_graph(graph):

Visualize the relationship graph

pos = nx.kamada_kawai_layout(graph)
edge_weights = nx.get_edge_attributes(graph, 'weight')

nx.draw(graph, pos, with_labels=True, node_color='skyblue',
edge_color='gray', font_size=10)

nx.draw_networkx_edge_labels(graph, pos,
edge_labels=edge_weights, font_size=10)

plt.show()

print("\nFinal Total Payoffs and Strategies after simulation:")
for i, player in enumerate(players):

strategy_name = type(player).__name__
total_payoff = payoff_accumulator[f"Player_{i+1}"]
print(f"Player_{i+1}: {total_payoff} (Strategy:

{strategy_name})")

visualize_graph(relationship_graph)

IV. RESULT AND ANALYSIS

To begin testing the simulation, the initial focus would be on

the two most basic strategies: cooperator, who always cooperate

and defector, who always defect. This simple setup will provide

a solid foundation for understanding the core dynamic of the

simulation, such as how payoff accumulates and how

relationships evolve. Below is the setup that will be used for this

first experiment:

Simulation parameters
THRESHOLD = 0 # Only allow matches if the weight is above this
threshold
REBUILD_CHANCE = 0.05 # Chance to rebuild severed
relationships
NUM_ROUNDS = 20 # Number of rounds in the simulation
NUM_TURNS = 20 # Number of turns each round between each player
USE_MORAN_PROCESS = False # Toggle for Moran process
RANDOM_PLAYERS = False # Toggle for randomized player
PLAYER_COUNT = 10 # Player count for randomize player
INIT_WEIGHT = 100 # Initial weights of the edges

The players will consist of five cooperators and five defectors.

players = [

 axl.Cooperator(),
 axl.Defector(),
 axl.Defector(),
 axl.Cooperator(),
 axl.Cooperator(),
 axl.Defector(),
 axl.Cooperator(),
 axl.Cooperator(),
 axl.Defector(),
 axl.Defector()
]

To allow for easier analysis, the program will be modified to

display the relationship graph after each round. Below are the

results:

Fig. 4.1. Relationship Graph After Round 1

Source: Author

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

As shown by the graph, every nodes are still connected to

each other meaning that no relationship have been severed. The

difference lies in the weight of the edges. There are currently 3

distinct values for the weights of the edges which are 60, 80 and

120. The edges weighing 60 are clustered in the middle of the

graphs and align with the defectors. Two defectors interacting

with each other will cause the relationship to strain even faster

than between a cooperator and defector. The edges weighing 80

indicates interaction between cooperator and defectors. This

shows a reduction in relationship strength by 20 points which

equals the number of turns within each round. The edges

weighing 120 shows the interaction between cooperator.

Different from the other two values, the weight actually

increases from the initial weights, showcasing a fostering of

trust between cooperator.

Round 1
Total Payoffs and Strategies after Round 1:
Player_1: 240 (Strategy: Cooperator)
Player_2: 580 (Strategy: Defector)
Player_3: 580 (Strategy: Defector)
Player_4: 240 (Strategy: Cooperator)
Player_5: 240 (Strategy: Cooperator)
Player_6: 580 (Strategy: Defector)
Player_7: 240 (Strategy: Cooperator)
Player_8: 240 (Strategy: Cooperator)
Player_9: 580 (Strategy: Defector)
Player_10: 580 (Strategy: Defector)

The payoff accumulated from the first round showed that the

defectors outperformed the cooperators by over twice as much.

This outcome is consistent with well known Iterated Prisoner’s

Dilemma dynamics where defector gains greater immediate

reward compared to cooperators.

Fig. 4.2. Relationship Graph After Round 2

Source: Author

Round 2
Total Payoffs and Strategies after Round 2:
Player_1: 480 (Strategy: Cooperator)
Player_2: 1160 (Strategy: Defector)
Player_3: 1160 (Strategy: Defector)
Player_4: 480 (Strategy: Cooperator)
Player_5: 480 (Strategy: Cooperator)
Player_6: 1160 (Strategy: Defector)
Player_7: 480 (Strategy: Cooperator)
Player_8: 480 (Strategy: Cooperator)
Player_9: 1160 (Strategy: Defector)
Player_10: 1160 (Strategy: Defector)

The second round results are consistent with that of the first

round. The relationship strength seems to change at the same

pace and the accumulated payoff also shows similar growth.

Fig. 4.3. Relationship Graph After Round 3

Source: Author

Things are starting to change in the third round. As shown in

the graph, the defectors are no longer connected to each other.

This means they won’t further interact, causing them to lose

potential payoff however miniscule it is. The accumulated

payoff below still shows that the defectors are still leading in

terms of overall performance.

Total Payoffs and Strategies after Round 3:
Player_1: 720 (Strategy: Cooperator)
Player_2: 1740 (Strategy: Defector)
Player_3: 1740 (Strategy: Defector)
Player_4: 720 (Strategy: Cooperator)
Player_5: 720 (Strategy: Cooperator)
Player_6: 1740 (Strategy: Defector)
Player_7: 720 (Strategy: Cooperator)
Player_8: 720 (Strategy: Cooperator)
Player_9: 1740 (Strategy: Defector)
Player_10: 1740 (Strategy: Defector)

Fig. 4.4. Relationship Graph After Round 5

Source: Author

Fast forward to the fifth round, the shape of the graph has

drastically changed. At this point, mostrelationships involving

defector have been severed while the cooperators’ still remain

strong. Although, some severed relationships have been rebuilt.

Total Payoffs and Strategies after Round 5:
Player_1: 1200 (Strategy: Cooperator)
Player_2: 2780 (Strategy: Defector)
Player_3: 2760 (Strategy: Defector)
Player_4: 1200 (Strategy: Cooperator)

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Player_5: 1200 (Strategy: Cooperator)
Player_6: 2740 (Strategy: Defector)
Player_7: 1200 (Strategy: Cooperator)
Player_8: 1200 (Strategy: Cooperator)
Player_9: 2760 (Strategy: Defector)
Player_10: 2740 (Strategy: Defector)

The accumulated payoffs still shows that the defectors are in

the lead in terms of payoffs. This is consistent with what is

known about defector-cooperator interactions from a classic

Iterated Prisoner’s Dilemma.

Fig. 4.5. Relationship Graph After Round 10

Source: Author

Total Payoffs and Strategies after Round 10:
Player_1: 2400 (Strategy: Cooperator)
Player_2: 2820 (Strategy: Defector)
Player_3: 2780 (Strategy: Defector)
Player_4: 2400 (Strategy: Cooperator)
Player_5: 2400 (Strategy: Cooperator)
Player_6: 3340 (Strategy: Defector)
Player_7: 2400 (Strategy: Cooperator)
Player_8: 2400 (Strategy: Cooperator)
Player_9: 2980 (Strategy: Defector)
Player_10: 2740 (Strategy: Defector)

Fast forward to the tenth round shows that the cooperator have

mostly managed to catch up to the defectors, while the defectors

mostly were not able to interact due having no trust with other

players.

Fig. 4.6. Relationship Graph After Round 20

Source: Author

Final Total Payoffs and Strategies after simulation:
Player_1: 4800 (Strategy: Cooperator)
Player_2: 3520 (Strategy: Defector)
Player_3: 3260 (Strategy: Defector)
Player_4: 4800 (Strategy: Cooperator)

Player_5: 4800 (Strategy: Cooperator)
Player_6: 3660 (Strategy: Defector)
Player_7: 4800 (Strategy: Cooperator)
Player_8: 4800 (Strategy: Cooperator)
Player_9: 3220 (Strategy: Defector)
Player_10: 3620 (Strategy: Defector)

The final round shows that the cooperators have managed to

overtake the defectors in overall performance even though they

are at a massive matchup disadvantage. Although the defectors

got a massive lead at the start, this advantage slowly but surely

diminished as the tournament went on as their reckless

behaviour at the start caused them barely interact after the fifth

round. This simulation definitely does not reflect the real world

as real world scenario develops and changes overtime. This does

however provides insight into the nature of cooperation and

defection.

Below is an example of randomized strategies pitted against

each other for 100 rounds:

Fig. 4.7. Relationship Graph After Round 100

Source: Author

Final Total Payoffs and Strategies after simulation:
Player_1: 50508 (Strategy: TitForTat)
Player_2: 23568 (Strategy: AntiCycler)
Player_3: 39824 (Strategy: NiceAverageCopier)
Player_4: 14301 (Strategy: Adaptive)
Player_5: 40075 (Strategy: DoubleCrosser)
Player_6: 40142 (Strategy: WorseAndWorse)
Player_7: 40518 (Strategy: WinStayLoseShift)
Player_8: 35566 (Strategy: AverageCopier)
Player_9: 19021 (Strategy: Prober)
Player_10: 35166 (Strategy: Forgiver)

Below is an example when the Moran Process is applied to a

20 round game:

Fig. 4.8. Relationship Graph After Round 20 (Moran Process)

Source: Author

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Round 1
Total Payoffs and Strategies after Round 1:
Player_1: 297 (Strategy: Cooperator)
Player_2: 420 (Strategy: HardTitForTat)
Player_3: 379 (Strategy: UsuallyDefects)
Player_4: 449 (Strategy: Aggravater)
Player_5: 275 (Strategy: WorseAndWorse)
Player_6: 502 (Strategy: UsuallyDefects)
Player_7: 379 (Strategy: EasyGo)
Player_8: 498 (Strategy: UsuallyDefects)
Player_9: 454 (Strategy: Punisher)
Player_10: 400 (Strategy: WinStayLoseShift)

Final Total Payoffs and Strategies after simulation:
Player_1: 6623 (Strategy: WinStayLoseShift)
Player_2: 6400 (Strategy: HardTitForTat)
Player_3: 3098 (Strategy: HardTitForTat)
Player_4: 3569 (Strategy: HardTitForTat)
Player_5: 6152 (Strategy: HardTitForTat)
Player_6: 2556 (Strategy: UsuallyDefects)
Player_7: 6326 (Strategy: HardTitForTat)
Player_8: 2377 (Strategy: UsuallyDefects)
Player_9: 6791 (Strategy: WinStayLoseShift)
Player_10: 6383 (Strategy: HardTitForTat)

Both of these examples illustrate that adaptive cooperative

strategies win in the long run, while extremely aggressive

strategies peak early and find it difficult to maintain relationship

in the long run.

V. CONCLUSION

The result of the simulation demonstrates the dynamic nature

of strategies in the Iterated Prisoner’s Dilemma. Aggressive

strategies tend to achieve higher payoff early in the simulation

but receive a sharp decline as relationship dynamics evolve and

ties are severed. In constrast, a more cooperative strategy have

a slow start but shows more long term success. A successful

strategy must strike a balance between the two. These strategies

thrive off being able to foster cooperation and adapt to the

behavior of others.

The usage of weighted graphs has managed to effectively

model relationship dynamics between multiple players, adding

an additional layer of complexity to the traditional Iterated

Prisoner’s Dilemma. While it has managed to model

relationships within a vacuum, it does not provide the full

picture. It is not the only tool available. Regardless, the

Prisoner’s Dilemma has proven to be a powerful tool to analyze

relationships. Whether that is between individuals, organization

or even nations, there is always an application of the PD there.

While the temptation to defect may be high, cooperation and the

ability to adapt proved to be more sustainable and leads to better

outcome.

VI. APPENDIX

Full source code of the program is available at:

https://github.com/DanielDPW/Makalah_IF1220_Matdis

VII. ACKNOWLEDGMENT

The author expresses gratitude to lecturer Dr. Rinaldi Munir,

M. T. as the lecturer of IF1220 Discrete Mathematics course, for

his guidance and resource provided in finishing this paper. The

author also expresses thanks to Robert Axelrod as one of the

main reference and to the people behind the Axelrod Library for

the implementation of this project.

REFERENCES

[1] R. Munir. “Graf (Bagian 1)”, 2024.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf (accessed: Jan. 4, 2025).
[2] R. Munir. “Graf (Bagian 2)”, 2024.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-

Graf-Bagian2-2024.pdf (accessed: Jan. 4, 2025).
[3] R. Munir. “Graf (Bagian 3)”, 2024.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-

Graf-Bagian2-2024.pdf (accessed: Jan. 4, 2025).
[4] K. H. Rosen, Discrete Mathematics and Its Applications, 7th ed. New

York, NY, USA: McGraw-Hill, 2012.

[5] S. Kuhn, "Prisoner's Dilemma," The Stanford Encyclopedia of Philosophy
(Winter 2024 Edition), E. N. Zalta & U. Nodelman (eds.),

https://plato.stanford.edu/archives/win2024/entries/prisoner-dilemma/

(accessed: Jan. 6, 2025).

[6] R. Axelrod, The Evolution of Cooperation, 1st ed. New York, NY,

USA:Basic Books, 1984

[7] Axelrod Documentation, https://axelrod.readthedocs.io/en/stable/
(accessed: Jan. 6, 2025).

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Januari 2025

Daniel Pedrosa Wu 13523099

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://plato.stanford.edu/archives/win2024/entries/prisoner-dilemma/
https://axelrod.readthedocs.io/en/stable/

