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Abstract—This paper explores the implementation of weighted 

graph in modelling relationship dynamics in the context of Iterated 

Prisoner’s Dilemma and its impact in long-term success. By 

integrating relationship dynamics with graph theory, this study 

shows how the ability to build and sever relationship can majorly 

influence the evolution of strategies over time. The research 

investigates the dynamics between cooperative and defective 

strategy. Result shows that defective strategy offers greater 

immediate result but falls off quickly while cooperative strategy 

takes time to build up but offers a more sustainable outcome. It 

suggests that successful strategies in IPD requires a balance 

between the two concepts. 
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I.   INTRODUCTION 

In this interconnected world, interactions are rarely isolated 

events. They hinge on trust, reciprocity, potential for mutual 

benefits and anticipation of future encounters. Although both 

parties stand to gain from mutual cooperation, the temptation to 

further one’s own self interest and fear of exploitation are ever-

present. Consequently, decision-making are rarely 

straightforward. Individiuals, organization and even nations are 

constantly faced with decisions that have to balance short-term 

gains with long-term consequences. These dynamics lie at the 

heart of many real-world decision-making processes. 

At their core, these decisions revolve around the choice 

between cooperation and defection. Cooperation offers mutual 

benefits, while defection can yield greater immediate rewards. 

The field of game theory provides a mathematical framework 

for analyzing interdependent decisions and strategic decision-

making. Among its many models, the Prisoner’s Dilemma (PD) 

stands as a fundamental paradigm in understanding the tension 

between self interest and collective welfare.  

In the PD, two players—a term used in game theory to refer 

to the parties involved—must decide between cooperating with 

one another for mutual benefit or defecting for personal gain, 

with the outcome depending on their combined choices. Despite 

its simplicity, the PD stands out for its relevance in several 

fields. Even nowadays, it is still used to model real-world 

scenarios, ranging from economics to international relations and 

scientific fields. While the classic version of PD offers valuable 

insights into one-time interactions, very few real-world 

interactions are one-off occurences. Most decisions are 

influenced by past actions and ongoing relationships. 

To better reflect these real scenarios, the PD is often extended 

into the Iterated Prisoner’s Dilemma (IPD). The IPD extends the 

PD into repeated interactions, allowing players to adapt their 

strategies and allowing past outcomes to influence future 

choices. However, traditional IPD models often neglect to 

account for the possibility of severing and rebuilding 

relationships. These models assume that players will continue to 

interact with each other despite a history of negative 

interactions, without considering that relationship may be 

severed or rebuilt over time.  

In many real-world context, severing ties can be a valid 

strategy to help mitigate risk and protect personal interest. These 

scenarios can be modelled using weighted graphs by 

representing the players as nodes and the strength of the 

relationship as edges, updating based on cooperative or 

defective actions. The weights on the edge can reflect the level 

of trust, cooperation and history between the players. This 

approach provides a more dynamic system, reflecting the 

nuances of real-world decision-making processes. 

This study explores the application of weighted graphs to 

enhance the modelling of the Iterated Prisoner’s Dilemma. By 

incorporating the evolving relationships between players into a 

graph structure, this study seeks to identify strategies that 

maximizes long-term payoff by balancing short-term decisions 

with long-term relationship outcomes. Through Python-based 

simulations, this study aims to simulate the intricate and 

nuanced dynamics of real-world decision-making. 

 

II.  THEORETICAL FOUNDATION 

A. Graph 

A graph is a discrete mathematical structure, consisting of 

vertices (nodes) and edges that connect these vertices and is used 

to model relationship between objects [4]. Formally, a graph 𝐺 

is defined as 𝐺 = (𝑉, 𝐸), where: 

1. 𝑉 is a nonempty set of vertices, which represents the 

objects in the system [1]. 

𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} 
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2. 𝐸 is a set of edges, which represents the relationship 

between vertices [1]. 

𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} 

 
 

Fig. 2.1. Example of a Graph 

Source: Generated using 

https://csacademy.com/app/graph_editor/ 

 

Graphs can be grouped based on different properties. These 

properties include: 

1. Complexity 

A graph in which each pair of vertices are connected by 

at most one edge is called a simple graph [1]. More 

complex graphs may include loops, where edges connect 

a vertex to itself  or multiple edges, where the same pair 

of vertices are connected by two or more edges. These 

graphs are called unsimple graph [1], which can further 

be classified into multi-graph that contains multiple 

edges and pseudo-graph which contains loops [1]. 

 

 
 

Fig. 2.2. Simple and Unsimple Graphs 

Source: https://mathworld.wolfram.com/SimpleGraph.html 

 

2. Directional Orientation 

A graph in which each edge has a specified direction is 

called a directed graph [1]. This indicates a one-way 

relation between two vertices. When the edges of a graph 

do not have a specified direction, the graph is called an 

undirected graph [1]. While they are most commonly 

used to represent a bidirectional relationship, this is not 

always the case. 

 

 
 

Fig. 2.3. Directed and Undirected Graph 

Source: Generated using 

https://csacademy.com/app/graph_editor/ 

 

3. Edge Weights 

A graph in which each edge is assigned a numerical value 

(weight) is called a weighted graph [1]. These values can 

represent various attributes, depending on context. In 

contrast, a graph in which edges are not assigned 

numerical value is called an unweighted graph. This 

graph treat all edges as equal. 

 

 
 

Fig. 2.4. Unweighted and Weighted Graph 

Source: Generated using 

https://csacademy.com/app/graph_editor/ 

 

4. Connectivity 

A graph where there exist a path from every vertices to 

every other vertices is called a connected graph [1]. This 

means that it is possible to reach any vertex to any other 

vertex by traversing the graph. If there is atleast one pair 

of vertices that does not satisfy this condition, then the 

graph is called a disconnected graph [1]. 

 

 
 

Fig. 2.5. Connected and Disconnected Graph 

Source: https://rajshah001.medium.com/graphs-and-real-life-

application-28759b77b833 

 

Some terminology used in graph theory includes: 

1. Adjacency 

Two vertices 𝑢 and 𝑣 in graph 𝐺 are called adjacent if 

there exist an edge 𝑒 of 𝐺 in which 𝑢 and 𝑣 are the 

endpoints of 𝑒 [4]. 

2. Incidency 

An edge 𝑒 is called incident with vertices 𝑢 and 𝑣 if 𝑒 

connects 𝑢 and 𝑣 [4]. 

3. Degree 

The degree of a vertex 𝑣 is the number of edges incident 

to it, except that a loop at the vertex contributes twice to 

the degree of the vertex [4]. 

https://csacademy.com/app/graph_editor/
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4. Isolated Vertex 

A vertex 𝑣 is called an isolated vertex if there exist no 

edges 𝑒 that are incident to it [1]. 

5. Null Graph 

A graph 𝑔 is called a null graph if the set of edges 𝐸 are 

empty. In other words, there are no edges 𝑒 connecting 

any pair of vertices 𝑣 in 𝑔 [1]. 

6. Path 

A path in graph 𝐺 is a sequence of vertices 𝑉 and edges 

𝐸 such that each pair of vertices are connected by an 

edge. The path starts at vertex 𝑣0 and ends at vertex 𝑣𝑛 

[1]. 

7. Cycle 

A cycle in graph 𝐺 is a path that start and end on the same 

vertex [1]. 

 

B. The Prisoner’s Dilemma 

 

 
 

Fig. 2.6. Prisoner’s Dilemma Illustrated 

Source: https://www.britannica.com/science/game-theory/The-

prisoners-dilemma 

 

Imagine two individuals, John and Jane who have been 

arrested for a crime that they committed together. Both of them 

are placed in separate cells. The police do not have sufficient 

evidence to convict them of a major crime but they do have 

sufficient evidence to convict them of a lesser crime. They offer 

the duo the same deal: 

1. If one of them remains silent while the other is silent, 

then the one who confessed will remain free while the 

other will receive a long sentence. 

2. If both of them confess, then both will receive moderate 

sentences. 

3. If both of them remain silent, then both will receive short 

sentences. 

Both prisoner must decide to cooperate with each other and 

remain silent or betray the other by confessing. The dilemma 

that they are faced with is that regardless of what the other 

chooses, it is within their best interest to betray the other and 

confess, since the potential reward for confessing is much higher 

than remaining silent. The rationale is that if Jane cooperates, 

then John should defect since going free is better than receiving 

short sentence. If John defects, then Jane should also defect 

since receiving a short  sentence is better than receiving a long 

sentence. However, notice that if both chooses to betray each 

other, they end up with a worse outcome than if both chooses to 

remain silent.  

This puzzle illustrates a conflict between individual 

rationality and collective well-being. From a self-interested 

rational perspective, mutual cooperation is irrational. However, 

if both parties acted on their self-interested rationale, they end 

up with a worse outcome than if they had both chosen the 

“irrational” choice of cooperation.  

This paradox is also known as the Prisoner’s Dilemma (PD), 

one of the most well-known problem in the field of game theory. 

In game theory, rationality is defined as the ability to make 

decisions that maximizes one’s own personal payoff, based on 

the given premises and information. In the context of the 

Prisoner’s Dilemma, both players are assumed to be rational 

agent and are aware that the other is also a rational agent. Given 

this information, both players are likely choosing to defect since 

it provides a better payoff regardless of the other player’s choice. 

In its simplest form, the Prisoner’s Dilemma can be expressed 

using a payoff matrix [5]: 

 

 C D 

C (𝑅, 𝑅) (𝑆, 𝑇) 

D (𝑇, 𝑆) (𝑃, 𝑃) 

 

Where: 

1. 𝑅 is the reward for mutual cooperation. 

2. 𝑃 is the punishment for mutual defection. 

3. 𝑆 is the sucker payoff when one player cooperate while 

the other defect. 

4. 𝑇 is the temptation payoff when one player defect whle 

the other cooperate. 

This dilemma only works if the payoff follows the inequality 

𝑇 > 𝑅 > 𝑆 > 𝑃. This inequality means that the temptation 

payoff yields greater reward than the reward for mutual 

cooperation, while on the other hand the punishment for mutual 

defection is worse than the sucker payoff. Consequently, the 

dominant strategy for both player is to defect (D) as it provides 

the best payoff regardless of the other player’s choice. However, 

in this scenario, both players playing rationally leads to 

suboptimal outcome for both players, which illustrate the 

paradoxical nature of this dilemma. 

 

C. The Iterated Prisoner’s Dilemma 

While the Prisoner’s Dilemma involves a one-time 

interaction, real-world scenarios often involve repeated 

interactions between individuals. To more accurately model 

these situations, the Iterated Prisoner’s Dilemma (IPD) builds 

on the classic Prisoner’s Dilemma by allowing players to engage 

in multiple rounds of interactions. This introduces a whole new 

dimension to the game by allowing players to learn from 

previous interactions and adapt their strategy accordingly. This 

version of the Prisoner’s Dilemma captures the dynamics of 

https://www.britannica.com/science/game-theory/The-prisoners-dilemma
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real-world relationships more accurately. 

In contrast to the Prisoner’s Dilemma where defecting is the 

dominant strategy, the IPD allows for more cooperative tactics 

to emerge as viable and advantageous strategies. The repeated 

nature of the interactions allow players to influence other’s 

behavior, develop trust and build relationships. In the IPD, 

players must not only make decisions for immediate payoffs, but 

also consider the ramifications in future rounds. This creates an 

environment where past cooperations are rewarded and 

continuous defections are punished. 

It is important to note that this does not mean that defection 

is an inherently bad strategy. Defection can still be effective in 

specific context, whether as a means of retaliation or exploit 

overly trusting players. The iterative nature of the IPD 

incentivizes player to take a more conservative approach, by 

weighing the potential risk and reward for each decision. Being 

overly cooperative can lead to exploitation, while continuous 

defection leads diminishing trust. Successful players maintain a 

balance between cooperation and defection, adjusting their 

strategy based on past actions. In an infinite game, the ability to 

build and maintain relationship becomes even more important, 

as opposed to a finite game where player might defect earlier to 

maximize payoffs. This balancing act emphasizes the 

complexity of real-world decision-making, where strategies 

must adapt to evolving circumstances. 

In his 1984 book titled The Evolution of Cooperation, Robert 

Axelrod delved into how cooperation can be fostered by self-

interested rational individuals. Axelrod detailed how he ran a 

series of tournaments where individuals submit their strategies 

for the IPD and pitted against one another in a round robin 

tournament. Axelrod found that greedy strategies tend to do very 

poorly in the long run, while more altruistic strategies thrive. To 

his surprise, the winner was the simplest program, utilizing the 

tit for tat strategy [6]. The strategy starts by cooperating and 

proceeds to copy the opponent’s previous move till the end of 

the match.  

This success can be attributed to the principle of reciprocity. 

Reciprocity refers to responding to another’s action with a 

similar action. By meeting cooperation with cooperation and 

defection with defection, the strategy fosters trust with other 

cooperators and deters exploitation by defectors. Based on the 

tournament results, Axelrod outlined four key elements of a 

successful strategy [6] which includes: 

1. Nice 

A successful strategy should always start by cooperating 

and avoid being the first to defect. This builds trust and 

encourages mutual cooperation from the start. A 

successful strategy should also be forgiving, allowing 

reconciliationbut firm enough to avoid being exploited. 

2. Non-envious 

A successful strategy does not aim to outperform others. 

Instead, it prioritizes mutually beneficial outcomes, 

realizing that those benefits accumulate over time. 

3. Reciprocating 

A successful strategy should reciprocate the opponent’s 

action in kind. It rewards cooperation with cooperation 

and retaliates against defection to discourage further 

exploitation. 

4. Simple 

A successful strategy should be simple and easy to 

understand. Clearer intentions make it easy for others to 

cooperate and achieve mutually beneficial outcomes. 

 

D. The Moran Process 

The Moran Process, named after British mathematician is a 

stochastic (random) model used to study evolution within a 

finite population. Due to being a stochastic model, the outcome 

of the Moran Process is not deterministic and the system evolves 

over time in unpredictable ways. The Iterated Prisoner’s 

Dilemma, which focuses on strategy evolution over a series of 

repeated interactions between two individuals can be further 

extended to include the Moran Process. By including the 

stochastic element of the Moran Process, the IPD can be used to 

not only explore how strategies evolve through repeated 

interactions, but also how it spreads across a population. 

In the context of IPDs, a fixed population of individuals 

individually adopt their own strategies and interact with one 

another. Individuals considered fit for reproduction are chosen 

at random based on their payoff from their interactions with 

other individuals. This individual then reproduces, passing 

down their strategy to another individual chosen at random. 

Over time, this ensures successful strategies are more likely to 

spread, while strategies that perform poorly will fade away. In a 

way, this process reflects real-world scenarios where successful 

traits, strategies and trends tend to dominate and persist within a 

population. 

 

III.   IMPLEMENTATION 

A. Research Limitation 

For the purpose of this research, some limitations are set to 

maintain focus and clarity. The limitations are as follows: 

1. Fixed Population Size: This research assumes a fixed 

population size. The size of the population will not grow 

or shrink, but the strategies adopted by individuals may 

change. 

2. Finite Iterations: The model is limited to a finite number 

of iterations due to practical limitiations. 

3. Simplified Payoff Matrix: A standard payoff matrix 

following the 𝑇 > 𝑅 > 𝑆 > 𝑃 inequality is used to 

simplify interaction dynamics. 

4. Limited Strategies: The set of strategies used will be 

limited to a predefined set, which incorporate 

cooperative, defective and adaptive strategies to maintain 

a manageable level of complexity. 

5. Limited Interaction Scope: Interactions are restricted to a 

pair of players at a time, without considering the 

influence of neighboring individuals. The population 

only affects the model during reproduction. 

 

B. Programming Language 

The implementation of this program will be done using 

Python. Python is chosen for its versatility, ease of use and 

extensive library support. A key library used for this 

implementation is Axelrod. Axelrod is powerful library which 

provides various tools for Iterated Prisoner’s Dilemma research. 

Axelrod offers over 200 strategies, facilitates the creation of 
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matches and tournaments, and provides an easy way to analyze 

the result in detail. Additionally, libraries such as random for its 

stochastic elements, NetworkX for its graph-based computation 

and Matplotlib for its visualization will be used to complement 

Axelrod already robust simulation of the Iterated Prisoner’s 

Dilemma. 

 
import axelrod as axl 
import random 
import networkx as nx 
import matplotlib.pyplot as plt 

 

C. Simulation Parameters 

To effectively model this simulation, a set of parameters is 

defined. The following parameters control the behavior of the 

simulation and allows for a more-controlled exploration of 

relationship dynamics within the scope of the Iterated Prisoner’s 

Dilemma: 

1. THRESHOLD: A threshold value that determine 

whether an interaction between two players should occur. 

If the relationship (edge weights) between two players is 

below the threshold, relationship will be severed and both 

will cease to interact. The corresponding edge on the 

relationship graph will also be removed. This value is 

used to model a deteriorating relationship. 

2. REBUILD_CHANCE: This parameter defines the 

chance of rebuilding a relationship. If a relationship 

between two players was severed, there is a chance that 

the relationship might be rebuilt based on this value. This 

offers a possibility of reconciliation between players. 

3. NUM_ROUNDS: This parameter dictates the total 

number of rounds that will take place between the 

players. 

4. NUM_TURNS: This parameter specifies the amount of 

turns in a single round of interaction between each pair 

of players. In other words, this parameter defines how 

many moves each player will make in a single round. 

5. USE_MORAN_PROCESS: This parameter determines 

if the Moran Process will be used in the simulation. If 

enabled, players with higher payoffs have a higher 

chance of reproducing and replacing less fortunate 

players. This is applied after each rounds. 

6. RANDOM_PLAYERS: This parameter determines if 

players are assigned strategies randomly or initialized 

with a fixed set of strategies. 

7. PLAYER_COUNTS: This parameter determines the 

amount of players generated when 

RANDOM_PLAYERS is enabled. 

8. INIT_WEIGHT: This parameter sets the initial weights 

of relationship to determine the strength of the 

relationship. These weights will evolve as the simulation 

progress. 

 
# Simulation parameters 
THRESHOLD = 0  # Only allow matches if the weight is above this 
threshold 
REBUILD_CHANCE = 0.1  # Chance to rebuild severed relationships 
NUM_ROUNDS = 5  # Number of rounds in the simulation 
NUM_TURNS = 20 # Number of turns each round between each player 
USE_MORAN_PROCESS = False  # Toggle for Moran process 
RANDOM_PLAYERS = False # Toggle for randomized player 
PLAYER_COUNT = 10 # Player count for randomize player 

INIT_WEIGHT = 100 # Initial weights of the edges 

 

D. Initialization 

The next step is initializing the key components of the 

simulation, which are the players and the relationship graph. 

Players are initialized by selecting from a predefined set of 

strategies, either randomized or fixed depending on the 

configured parameters. Each player is an instance of the chosen 

strategy, which are responsible for dictating how the player 

interacts with other player during the simulation. 

 
# Define the players 
if RANDOM_PLAYERS: 

players = [random.choice(strategies) for i in 
range(PLAYER_COUNT)] # Randomize players 
else: 

players = [ 
    axl.Cooperator(),  
    axl.Defector(),  
    axl.Defector(),  
    axl.Cooperator(),  
    axl.Cooperator(),  
    axl.Defector(),  
    axl.Cooperator(),  
    axl.Cooperator(),  
    axl.Defector(),  
    axl.Defector() 
] 

 

Below is a list of the predefined strategies: 
# List of strategies 
strategies = [ 

axl.Cooperator(), 
axl.Defector(), 
axl.TitForTat(), 
axl.Grudger(), 
axl.Random(), 
axl.Adaptive(), 
axl.AdaptiveTitForTat(), 
axl.Forgiver(), 
axl.ForgivingTitForTat(), 
axl.Bully(), 
axl.Grumpy(), 
axl.Punisher(), 
axl.Resurrection(), 
axl.Gradual(), 
axl.GradualKiller(), 
axl.CycleHunter(), 
axl.AntiTitForTat(), 
axl.Aggravater(), 
axl.HardTitForTat(), 
axl.HardGoByMajority(), 
axl.UsuallyCooperates(), 
axl.UsuallyDefects(), 
axl.SuspiciousTitForTat(), 
axl.WorseAndWorse(), 
axl.DoubleCrosser(), 
axl.Predator(), 
axl.Prober(), 
axl.NiceAverageCopier(), 
axl.CycleHunter(), 
axl.AntiCycler(), 
axl.EasyGo(), 
axl.OriginalGradual(), 
axl.Detective(), 
axl.NTitsForMTats(), 
axl.SneakyTitForTat(), 
axl.AverageCopier(), 
axl.WinStayLoseShift(), 
axl.WinShiftLoseStay() 

] 

 

The relationship player is modelled using an unweighted 

graph, which represents the players as nodes and relationship as 

weighted edges. The initial weight of each edge is set to a 
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predefined value, defined in the parameters as INIT_WEIGHT. 

The weight symbolizes the strength of the relationship between 

the two nodes it connects. This weight is not static and can be 

changed over time, depending on the interaction between the 

two adjacent players. The graph serves two purposes, for one it 

helps in tracking the dynamic and ever-evolving relationship 

between every pair of players, and it also provides a clear 

visualization of these relationships. 

 
# Initialize the relationship graph 
relationship_graph = nx.Graph() 
for i, player in enumerate(players, start=1): 

relationship_graph.add_node(f"Player_{i}") 
 

# Initialize graph edges 
for i in range(len(players)): 

for j in range(i + 1, len(players)): 
    relationship_graph.add_edge(f"Player_{i+1}", 

f"Player_{j+1}", weight=INIT_WEIGHT) 

 

Finally, a payoff accumulator is initialized to track the 

cumulative payoff for each player throughout simulation. It is 

implemented as a Python dictionary where the player acts as the 

key while their corresponding payoff acts as the value. The 

payoffs are updated after every round and subsequently 

displayed to allow for further analysis. 

 
# Payoff accumulator for each player 
payoff_accumulator = {f"Player_{i+1}": 0 for i in 
range(len(players))} 

  

E. Playing The Matches 

The Axelrod library provides a built-in tournament system 

that facilitates large scale IPD simulations. Unfortunately, this 

built-in system does not fully meet the specific needs of this 

research. Specific components of this research such as the 

relationship dynamics through graph or the severance and 

rebuilding of relationship are not supported by Axelrod’s 

tournament system. To overcome this limitation, a custom 

implementation of the tournament system was made. This 

allows greater control on how the tournament is played out and 

integration with the relationship graph. 

 After each match, the graph is dynamically updated to reflect 

the outcome of the interactions. This process is executed by the 

update_relationships function. If a relationship falls 

below the specified thresholds, then that relationship will be 

severed. This is handled by the apply_thresholds function. 

Once the thresholds are applied, the program identifies a severed 

relationship and evaluate the possibility of rebuilding it through 

the rebuild_relationships function. 

 
def apply_thresholds(graph): 

# Sever relationship below the threshold 
 
edges_to_remove = [(u, v) for u, v, data in 

graph.edges(data=True) if data['weight'] <= THRESHOLD] 
graph.remove_edges_from(edges_to_remove) 
 

def rebuild_relationships(graph, players, 
rebuild_chance=REBUILD_CHANCE): 

# Rebuild relationship based on random chances 
 
for i in range(len(players)): 
    for j in range(i + 1, len(players)): 
        if not graph.has_edge(f"Player_{i+1}", 

f"Player_{j+1}"): 

            if random.random() < rebuild_chance: 
                graph.add_edge(f"Player_{i+1}", 

f"Player_{j+1}", weight=INIT_WEIGHT // 2) 
 

def update_relationships(graph, i, j, relationship_change): 
# Update the relationship after each round 
 
current_weight = graph.get_edge_data(f"Player_{i+1}", 

f"Player_{j+1}", default={'weight': 0})['weight'] 
graph.add_edge(f"Player_{i+1}", f"Player_{j+1}", 

weight=current_weight + relationship_change) 

 

The next step is to play out the matches. As mentioned before, 

the tournament uses a custom implementation to pit every player 

against every other players. This is done by using a nested loop 

to iterate through each pair of players. During the iteration, the 

program checks if there is an edge (relationship) between the 

players’ nodes in the graph. If there is, the program proceeds to 

play a match with the number of turn specified in the simulation 

parameters. The payoffs are then counted for every interactions 

and the relationship is updated depending on both players’ 

moves during the match. 

 
def play_matches(players, graph): 

# Play matches based on the relationship graph 
 
results = {} 
for i, player_a in enumerate(players): 
    for j in range(i + 1, len(players)): 
        if graph.has_edge(f"Player_{i+1}", f"Player_{j+1}"): 
            match = axl.Match((player_a, players[j]), 

turns=NUM_TURNS) 
            interactions = match.play() 
            payoffs = 

axl.interaction_utils.compute_final_score(interactions) 
            a_payoff, b_payoff = int(payoffs[0]), 

int(payoffs[1]) 
            results[(f"Player_{i+1}", f"Player_{j+1}")] = 

(interactions, (a_payoff, b_payoff)) 
 
            payoff_accumulator[f"Player_{i+1}"] += a_payoff 
            payoff_accumulator[f"Player_{j+1}"] += b_payoff 
 
            relationship_change = 0 
            for action_a, action_b in interactions: 
                if action_a == axl.Action.C and action_b == 

axl.Action.C: 
                    relationship_change += 1 
                elif (action_a == axl.Action.C and action_b 

== axl.Action.D) or (action_a == axl.Action.D and action_b == 
axl.Action.C): 

                    relationship_change -= 1 
                elif action_a == axl.Action.D and action_b 

== axl.Action.D: 
                    relationship_change -= 2 
 
            update_relationships(graph, i, j, 

relationship_change) 
 
return results 

 

Matches are then played out repeatedly in accordance to the 

number of rounds specified in the parameters. This is referred to 

as a tournament. The cumulative results from every matches 

decide the overall performance of the player. After a round has 

been played out, the program assesses the relationship between 

the players. If there are any relationships below the thresholds, 

then that relationships will be severed. Additionally, previously 

severed relationships may be rebuild, depending on the rebuild 

chance. If the Moran Process is toggled on, players with higher 

payoffs has a chance to reproduce and replace the strategy of 

another existing player. 
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for round_number in range(NUM_ROUNDS): 

print(f"Round {round_number + 1}") 
 
# Play matches 
match_results = play_matches(players, relationship_graph) 
 
# Apply thresholds 
apply_thresholds(relationship_graph) 
 
# Rebuild relationships 
rebuild_relationships(relationship_graph, players, 

rebuild_chance=REBUILD_CHANCE) 
 
# Apply Moran process 
if USE_MORAN_PROCESS: 
    moran_process(players, payoff_accumulator) 
 
# Print results after each round 
print(f"Total Payoffs and Strategies after Round 

{round_number + 1}:") 
for i, player in enumerate(players): 
    strategy_name = type(player).__name__ 
    total_payoff = payoff_accumulator[f"Player_{i+1}"] 
    print(f"Player_{i+1}: {total_payoff} (Strategy: 

{strategy_name})") 

 

F. The Moran Process 

The Axelrod library also provides a built-in mechanism to 

implement the Moran Process, but similar to tournament system, 

it does not account for the dynamic graph-based system 

implemented in this research. The Moran Process works by 

calculating the total accumulated payoffs of every players. 

Every players are then assigned weights based on their own 

accumulated payoffs in comparison to the total accumulated 

payoffs. Based on this weight, a random player will be selected 

to reproduce and replace the strategy of another player. 

 
def moran_process(players, payoffs): 

# Evolve strategies using the Moran process 
 
total_payoff = sum(payoffs.values()) 
if total_payoff == 0: 
    return  # Avoid division by zero 
 
# Calculate selection probabilities based on payoffs 
selection_probs = [payoffs[f"Player_{i+1}"] / total_payoff 

for i in range(len(players))] 
 
# Select a player to reproduce based on probabilities 
reproducing_index = random.choices(range(len(players)), 

weights=selection_probs, k=1)[0] 
 
# Select a player to be replaced 
replaced_index = random.choice([i for i in 

range(len(players)) if i != reproducing_index]) 
 
# Replace the strategy of the selected player 
players[replaced_index] = type(players[reproducing_index])()  

 

G. Visualization 

Once the tournament is complete, the program will display 

the final payoff accumulated by each player. This provides 

insight into the overall performance of the player against every 

opponent. In addition to that, the program will visualize the state 

of the relationship graph after the final round, showcasing the 

end result of the evolving interactions between players. 

 
def visualize_graph(graph): 

# Visualize the relationship graph 
 
pos = nx.kamada_kawai_layout(graph) 
edge_weights = nx.get_edge_attributes(graph, 'weight') 

nx.draw(graph, pos, with_labels=True, node_color='skyblue', 
edge_color='gray', font_size=10) 

nx.draw_networkx_edge_labels(graph, pos, 
edge_labels=edge_weights, font_size=10) 

plt.show() 
 
print("\nFinal Total Payoffs and Strategies after simulation:") 
for i, player in enumerate(players): 

strategy_name = type(player).__name__ 
total_payoff = payoff_accumulator[f"Player_{i+1}"] 
print(f"Player_{i+1}: {total_payoff} (Strategy: 

{strategy_name})") 
 
visualize_graph(relationship_graph) 

 

IV.   RESULT AND ANALYSIS 

To begin testing the simulation, the initial focus would be on 

the two most basic strategies: cooperator, who always cooperate 

and defector, who always defect. This simple setup will provide 

a solid foundation for understanding the core dynamic of the 

simulation, such as how payoff accumulates and how 

relationships evolve. Below is the setup that will be used for this 

first experiment: 

 
# Simulation parameters 
THRESHOLD = 0  # Only allow matches if the weight is above this 
threshold 
REBUILD_CHANCE = 0.05  # Chance to rebuild severed 
relationships 
NUM_ROUNDS = 20  # Number of rounds in the simulation 
NUM_TURNS = 20 # Number of turns each round between each player 
USE_MORAN_PROCESS = False  # Toggle for Moran process 
RANDOM_PLAYERS = False # Toggle for randomized player 
PLAYER_COUNT = 10 # Player count for randomize player 
INIT_WEIGHT = 100 # Initial weights of the edges 

 

The players will consist of five cooperators and five defectors. 

 
players = [ 

    axl.Cooperator(),  
    axl.Defector(),  
    axl.Defector(),  
    axl.Cooperator(),  
    axl.Cooperator(),  
    axl.Defector(),  
    axl.Cooperator(),  
    axl.Cooperator(),  
    axl.Defector(),  
    axl.Defector() 
] 

 

To allow for easier analysis, the program will be modified to 

display the relationship graph after each round. Below are the 

results: 

 

 
 

Fig. 4.1. Relationship Graph After Round 1 

Source: Author 
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As shown by the graph, every nodes are still connected to 

each other meaning that no relationship have been severed. The 

difference lies in the weight of the edges. There are currently 3 

distinct values for the weights of the edges which are 60, 80 and 

120. The edges weighing 60 are clustered in the middle of the 

graphs and align with the defectors. Two defectors interacting 

with each other will cause the relationship to strain even faster 

than between a cooperator and defector. The edges weighing 80 

indicates interaction between cooperator and defectors. This 

shows a reduction in relationship strength by 20 points which 

equals the number of turns within each round. The edges 

weighing 120 shows the interaction between cooperator. 

Different from the other two values, the weight actually 

increases from the initial weights, showcasing a fostering of 

trust between cooperator.  

 
Round 1 
Total Payoffs and Strategies after Round 1: 
Player_1: 240 (Strategy: Cooperator) 
Player_2: 580 (Strategy: Defector) 
Player_3: 580 (Strategy: Defector) 
Player_4: 240 (Strategy: Cooperator) 
Player_5: 240 (Strategy: Cooperator) 
Player_6: 580 (Strategy: Defector) 
Player_7: 240 (Strategy: Cooperator) 
Player_8: 240 (Strategy: Cooperator) 
Player_9: 580 (Strategy: Defector) 
Player_10: 580 (Strategy: Defector) 

 

The payoff accumulated from the first round showed that the 

defectors outperformed the cooperators by over twice as much. 

This outcome is consistent with well known Iterated Prisoner’s 

Dilemma dynamics where defector gains greater immediate 

reward compared to cooperators.  

 

 
 

Fig. 4.2. Relationship Graph After Round 2 

Source: Author 

 
Round 2 
Total Payoffs and Strategies after Round 2: 
Player_1: 480 (Strategy: Cooperator) 
Player_2: 1160 (Strategy: Defector) 
Player_3: 1160 (Strategy: Defector) 
Player_4: 480 (Strategy: Cooperator) 
Player_5: 480 (Strategy: Cooperator) 
Player_6: 1160 (Strategy: Defector) 
Player_7: 480 (Strategy: Cooperator) 
Player_8: 480 (Strategy: Cooperator) 
Player_9: 1160 (Strategy: Defector) 
Player_10: 1160 (Strategy: Defector) 

 

The second round results are consistent with that of the first 

round. The relationship strength seems to change at the same 

pace and the accumulated payoff also shows similar growth. 

 

 
 

Fig. 4.3. Relationship Graph After Round 3 

Source: Author 

 

Things are starting to change in the third round. As shown in 

the graph, the defectors are no longer connected to each other. 

This means they won’t further interact, causing them to lose 

potential payoff however miniscule it is. The accumulated 

payoff below still shows that the defectors are still leading in 

terms of overall performance. 

 
Total Payoffs and Strategies after Round 3: 
Player_1: 720 (Strategy: Cooperator) 
Player_2: 1740 (Strategy: Defector) 
Player_3: 1740 (Strategy: Defector) 
Player_4: 720 (Strategy: Cooperator) 
Player_5: 720 (Strategy: Cooperator) 
Player_6: 1740 (Strategy: Defector) 
Player_7: 720 (Strategy: Cooperator) 
Player_8: 720 (Strategy: Cooperator) 
Player_9: 1740 (Strategy: Defector) 
Player_10: 1740 (Strategy: Defector) 

 

 
 

Fig. 4.4. Relationship Graph After Round 5 

Source: Author 

Fast forward to the fifth round, the shape of the graph has 

drastically changed. At this point, mostrelationships involving 

defector have been severed while the cooperators’ still remain 

strong. Although, some severed relationships have been rebuilt. 

 
Total Payoffs and Strategies after Round 5: 
Player_1: 1200 (Strategy: Cooperator) 
Player_2: 2780 (Strategy: Defector) 
Player_3: 2760 (Strategy: Defector) 
Player_4: 1200 (Strategy: Cooperator) 
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Player_5: 1200 (Strategy: Cooperator) 
Player_6: 2740 (Strategy: Defector) 
Player_7: 1200 (Strategy: Cooperator) 
Player_8: 1200 (Strategy: Cooperator) 
Player_9: 2760 (Strategy: Defector) 
Player_10: 2740 (Strategy: Defector) 

 

The accumulated payoffs still shows that the defectors are in 

the lead in terms of payoffs. This is consistent with what is 

known about defector-cooperator interactions from a classic 

Iterated Prisoner’s Dilemma.  

 

 
 

Fig. 4.5. Relationship Graph After Round 10 

Source: Author 

 
Total Payoffs and Strategies after Round 10: 
Player_1: 2400 (Strategy: Cooperator) 
Player_2: 2820 (Strategy: Defector) 
Player_3: 2780 (Strategy: Defector) 
Player_4: 2400 (Strategy: Cooperator) 
Player_5: 2400 (Strategy: Cooperator) 
Player_6: 3340 (Strategy: Defector) 
Player_7: 2400 (Strategy: Cooperator) 
Player_8: 2400 (Strategy: Cooperator) 
Player_9: 2980 (Strategy: Defector) 
Player_10: 2740 (Strategy: Defector) 

 

Fast forward to the tenth round shows that the cooperator have 

mostly managed to catch up to the defectors, while the defectors 

mostly were not able to interact due having no trust with other 

players. 

 

 
 

Fig. 4.6. Relationship Graph After Round 20 

Source: Author 

 
Final Total Payoffs and Strategies after simulation: 
Player_1: 4800 (Strategy: Cooperator) 
Player_2: 3520 (Strategy: Defector) 
Player_3: 3260 (Strategy: Defector) 
Player_4: 4800 (Strategy: Cooperator) 

Player_5: 4800 (Strategy: Cooperator) 
Player_6: 3660 (Strategy: Defector) 
Player_7: 4800 (Strategy: Cooperator) 
Player_8: 4800 (Strategy: Cooperator) 
Player_9: 3220 (Strategy: Defector) 
Player_10: 3620 (Strategy: Defector) 

 

The final round shows that the cooperators have managed to 

overtake the defectors in overall performance even though they 

are at a massive matchup disadvantage. Although the defectors 

got a massive lead at the start, this advantage slowly but surely 

diminished as the tournament went on as their reckless 

behaviour at the start caused them barely interact after the fifth 

round. This simulation definitely does not reflect the real world 

as real world scenario develops and changes overtime. This does 

however provides insight into the nature of cooperation and 

defection.  

Below is an example of randomized strategies pitted against 

each other for 100 rounds: 

 

 
 

Fig. 4.7. Relationship Graph After Round 100 

Source: Author 

 
Final Total Payoffs and Strategies after simulation: 
Player_1: 50508 (Strategy: TitForTat) 
Player_2: 23568 (Strategy: AntiCycler) 
Player_3: 39824 (Strategy: NiceAverageCopier) 
Player_4: 14301 (Strategy: Adaptive) 
Player_5: 40075 (Strategy: DoubleCrosser) 
Player_6: 40142 (Strategy: WorseAndWorse) 
Player_7: 40518 (Strategy: WinStayLoseShift) 
Player_8: 35566 (Strategy: AverageCopier) 
Player_9: 19021 (Strategy: Prober) 
Player_10: 35166 (Strategy: Forgiver) 

 

Below is an example when the Moran Process is applied to a 

20 round game: 

 

 
 

Fig. 4.8. Relationship Graph After Round 20 (Moran Process) 

Source: Author 
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Round 1 
Total Payoffs and Strategies after Round 1: 
Player_1: 297 (Strategy: Cooperator) 
Player_2: 420 (Strategy: HardTitForTat) 
Player_3: 379 (Strategy: UsuallyDefects) 
Player_4: 449 (Strategy: Aggravater) 
Player_5: 275 (Strategy: WorseAndWorse) 
Player_6: 502 (Strategy: UsuallyDefects) 
Player_7: 379 (Strategy: EasyGo) 
Player_8: 498 (Strategy: UsuallyDefects) 
Player_9: 454 (Strategy: Punisher) 
Player_10: 400 (Strategy: WinStayLoseShift) 

 
Final Total Payoffs and Strategies after simulation: 
Player_1: 6623 (Strategy: WinStayLoseShift) 
Player_2: 6400 (Strategy: HardTitForTat) 
Player_3: 3098 (Strategy: HardTitForTat) 
Player_4: 3569 (Strategy: HardTitForTat) 
Player_5: 6152 (Strategy: HardTitForTat) 
Player_6: 2556 (Strategy: UsuallyDefects) 
Player_7: 6326 (Strategy: HardTitForTat) 
Player_8: 2377 (Strategy: UsuallyDefects) 
Player_9: 6791 (Strategy: WinStayLoseShift) 
Player_10: 6383 (Strategy: HardTitForTat) 

 

Both of these examples illustrate that adaptive cooperative 

strategies win in the long run, while extremely aggressive 

strategies peak early and find it difficult to maintain relationship 

in the long run. 

 

V.   CONCLUSION 

The result of the simulation demonstrates the dynamic nature 

of strategies in the Iterated Prisoner’s Dilemma. Aggressive 

strategies tend to achieve higher payoff early in the simulation 

but receive a sharp decline as relationship dynamics evolve and 

ties are severed. In constrast, a more cooperative strategy have 

a slow start but shows more long term success. A successful 

strategy must strike a balance between the two. These strategies 

thrive off being able to foster cooperation and adapt to the 

behavior of others. 

The usage of weighted graphs has managed to effectively 

model relationship dynamics between multiple players, adding 

an additional layer of complexity to the traditional Iterated 

Prisoner’s Dilemma. While it has managed to model 

relationships within a vacuum, it does not provide the full 

picture. It is not the only tool available. Regardless, the 

Prisoner’s Dilemma has proven to be a powerful tool to analyze 

relationships. Whether that is between individuals, organization 

or even nations, there is always an application of the PD there. 

While the temptation to defect may be high, cooperation and the 

ability to adapt proved to be more sustainable and leads to better 

outcome. 

 

 

VI.   APPENDIX 

Full source code of the program is available at: 

https://github.com/DanielDPW/Makalah_IF1220_Matdis 
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